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SUMMARY 

We present a simple and efficient finite element method to solve the Navier-Stokes equations in 
primitive variables V, p. It uses (a) an explicit advection step, by upwind differencing. Improvement 
with regard to the classical upwind differencing scheme of the first order is realized by accurate 
calculation of the characteristic curve across several elements, and higher order interpolation; (b) an 
implicit diffusion step, avoiding any theoretical limitation on the time increment, and (c) determination 
of the pressure field by solving the Poisson equation. Two laminar flow calculations are presented and 
compared to available numerical and experimental results. 

KEY WORDS Finite Elements Navier-Stokes Driven Cavity Flow Past a Cylinder 

1. INTRODUCTION 

In a previous paper' we have pointed out the interest of using the method of characteristics 
to solve the transport equation: 

where u is a given velocity field, and F(x, t) a scalar function. Figure 1 recalls our notations. 
When integrated over a time step, equation (l), written at location i, becomes: 

The solution of (2) then requires the interpolation of the value Fp from the values at 
neighbouring nodes, 

In a multidimensional calculation with a non-constant velocity field, p must be located in 
the domain, i.e. the characteristic curve must be integrated between times n + 1 and n, before 
performing the interpolation. 

Recent papers, and in particular Reference 2, advocate the same method to solve the 
advection problem. However, advection is not the sole problem in the Navier-Stokes 
equations. The velocity-pressure coupling, or Stokes problem, is also difficult, especially with 
F.E. methods. Several 'F.E. Stokes solvers' are available in the literature. Our method is 
directly derived from old F.D. methods in primitive variables V, p.13334 

027 1-209 1/84/030247-23$02.30 
0 1984 by John Wiley & Sons, Ltd. 

Received 13 July 1982 
Revised 20 November 1982 



248 J. P. HUFFENUS AND D. KHALETZKY 

time ln.41. 

, t i m e  n 

Figure 1. Method of characteristics 

2. THE METHOD OF CHARACTERISTICS IN AN F.E. CONTEXT 

Since all the nodal values are known at time n, the components of the velocity, and the 
transported function F, are piecewise analytic, owing to the shape function of each element. 
This feature allows us to compute the characteristic curve, and then to interpolate the value 
F". The calculation of the characteristic curve consists in solving the differential equation: 

dM 
-= V(M, t )  
dt 

from time n + l ,  to time n. When only a steady state flow or a slow transient flow is 
considered, V can be assumed to be independent of time, between times n and n + 1. Then 
we only solve: 

Several methods are envisaged to solve this equation. 

2.1. The rectilinear characteristic 

V is assumed to be locally constant and: 

M * = W + ' -  V 6 t  

where M* is the location of F*, W+' the location of node i, 6t the time increment. To 
achieve the advection step, we determine the element which contains M*, and compute the 
value F", using the shape function of this element. 

2.2. The curvilinear characteristic 

In this case, equation (3) is integrated more carefully, using one step of the Runge-Kutta 
algorithm per crossed element. With the RK1 method (Runge-Kutta of first order), the 
characteristic curve is rectilinear on each crossed element. With a moderate time increment 
at, it is not very different from the previous one. When RK2 or RK4 methods are used, the 
characteristic curve is curvilinear inside each crossed element. While integrating equation (3), 
the crossed element is always known. Hence, when this calculation is terminated, the 
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element which contains M" is already determined, and the advection step can be achieved by 
interpolating the value F". 

3 .  FORMULATION IN V* OF THE NAVIER-STOKES EQUATIONS 

The Navier-Stokes equations can be written in the following form: 

momentum -- DV- -vp t- v v2v 
Dt (4) 

continuity V V = 0 (5 )  
Let us integrate the equations (4) over a time step. Using the notations defined in the 
introduction, we introduce the scalar quantities u* and u* (in two dimensions). These values 
are the components of the vector V". Then the advection term of (4) becomes: 

D V  Vn+'-V* 
Dt St 
-= 

where S t  is the time increment. 

averaged over the time step. We choose a fully implicit evaluation: 
In order to obtain a workable scheme, the right-hand side of equation (4) must be 

t + F t  f (-Vp + v V'V) dt = -Vp"+'+ v V2Vn+' 
6t 

Thus the system (4), ( 5 )  becomes: 

VV"+I = 0 (71 

The system of coupled equations (6),  (7) can then be transformed into a set of uncoupled 
elliptical problems, by taking the divergence of (6)  and using the condition (7): 

v2p = v V*/& (8) 
Let us summarize then the calculation needed to carry the solution forwards, from time n, to 
time n+ 1: 

(i) Apply the method of the characteristics, to determine u* and u* at each node. 
(ii) Solve the problem (8) usually with Neumann boundary conditions. 

(iii) Solve the equations (6), usually with Dirichlet boundary conditions. 
Equation (8) appears in several F.D.  method^.'.^ Roache4 summarizes several references 
where the velocity-pressure coupling is solved in this way. The method of characteristics 
provides an easy formulation of the second member of (8). It can be noted that since: 

v" = v" -6t(V. vvy 
the divergence term div V* implicitly contains the necessary stabilizing term V V"/6t. The 
mathematical properties of this formulation were widely studied in an F.D. context. Its main 
drawback is that some Neumann boundary conditions must be inferred from the velocity 
field, in order to solve (8). 

For instance, the pressure gradient along a no-slip wall can be written as: 

Vp . n = -&/& 
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where s and n are respectively the tangential and normal directions to the wall, 7 the shear 
stress r = u au,/an. 

When an inlet velocity profile u,,(s) is specified: 

Vp . n = v au,,las 

4. FINITE ELEMENT METHOD 

4.1. Basic principle 

In a finite element context, the previously described algorithm remains simple: 
(a) as stated in Section 2, the interpolation of values V* can be easily done by using the 

(b) the second order differential problems appearing in second and third steps, are 

By application of the principle of virtual power,5 we obtain the following variational 
statement, which corresponds to the set of equations (8),  (6) for the two-dimensional case: 

shape function of the element containing M* 

perfectly suited to a finite element method. 

V2p Sp d o  = - V V* 6p d o  
St 'I 

($ u-uV2u) Su d o  = I -ap Su d o + l  I u* 6u d o  

v*Svdw 

ax 6t 

(9) 

Sofdo is the surface integral of a function f over the computational field 9. Let I? be the 
boundary of 9. After integration by parts of the equations, the weak formulation follows. 
Let n = (sin 0, -cos 0) be the normal vector to the contour r. 

(12) 
1 

S t  
Vp.  V Sp do  = -- I Sp VV* d o  +f Sp Vp. n ds 

u S u + v V u  V 6u) d o  =f I u" 6u do+ (v Vu .  n - p  sin 0) Suds 

\ 1 r  I, ( $ v S v + u V v  4: ( u V v .  n + p  cos 19) Sv ds 
(14) 

Consider now a triangulation of the domain. On each triangle, 

U = 4 T U n ,  V = djTVn, p = QTpn (15) 
4 and cp are the shape functions for the velocity and pressure fields respectively, un, v", p" 
are the column vectors of the nodal values. 

Substituting (15) into (12) we obtain the following expression for arbitrary variations of Sp 
and interior element. A: 

1 
St 

kp" = -- (Gu*" + C,,V*") (16) 
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for variations of Su: 

for variations of Sv: 

where 

(f M+uK)v" = g M v * " + C ~ p "  1 

After assembling and applying the boundary conditions (as an example pressure gradients for 
(12), and imposed velocity profiles for (13), (14)) we obtain 3 positive definite matrices which 
lead to the 3 linear systems to be solved in order to reach the state n + 1. 

4.2. Choice of the shape function 

The simplest choice is of course the linear shape function for y, and 4:  

(PT = 4T = Ul? 12, l31 (18) 

where l,, 12, 1, are the area co-ordinates of the triangle. 
This method was implemented by the authors, and tested on several flow calculations. As 

expected from the linear interpolation of the value V*, numerical damping was important. 
Moreover, we have found an unstable behaviour of the solution in some cases like the flow 
behind a sudden widening, or in the wake of an obstacle. For these reasons, this method has 
been given up. 

A better choice is used by Glowinsky et al.,6 in a different method. It is the P,-P2 triangle 
or Taylor-Hood element: parabolic six-node triangles for the velocities, linear three-node 
triangles for the pressure (Figure 2). 

In that case, 

(19) 
cp =u17 4, 131 

4 = {wil- I), w2- I), w&- 1),4&, 4 1 , ~  411131 

L-L 
Figure 2. The P1-P2 element: 0 velocities, + pressure 
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This method will be called later in the text PEFE2 (Poisson equation and finite elements of 
2nd order). 

4.3. Boundary conditions 

Boundary conditions for velocity components are in general easy, which is one of the main 
advantages of the V, p formulation. For an inlet condition, and a no slip wall, values of K 

and u are simply specified. For a horizontal (resp. vertical) symmetry axis, we specify u = 0 
and au/dy = 0 (resp. u = 0 and au/ax = 0). For a vertical (resp. horizontal) outlet boundary we 
can use p = 0  as a normal boundary condition, and = 0  (resp. u = 0 )  as a tangential 
boundary condition. Another possibility for an outlet condition is to specify V =  V*QI/Qo 
where QI is the discharge at the inlet and Qo the discharge at outlet. 

To solve equation (8) ,  and except for the boundary where p = 0, expressions for the 
pressure gradient can be derived from the momentum equation (see Section 3). The 
approximation of zero pressure gradient can also be used. We have run several calculations 
with both formulations, and in particular the examples presented herein. We always found 
that the exact formulation of the pressure gradient did not bring any significant improvement 
with regard to the zero pressure gradient approximation. Consequently, we believe that for a 
wide range of practical applications, the zero pressure gradient is workable. 

Before concluding the presentation of the P E E 2  method, it is of interest to make some 
comments about the incompressibility condition. This condition is not ensured for each 
element separately, as could be done with a penalization method. However, the global 
solution is very acceptably conservative, as will be seen later, when considering the results 
for the driven cavity flow. This good feature also appears in problems with an inlet and an 
outlet. In that case, the discrepancy between the inlet and outlet discharges never exceeds 1 
or 2 per cent, when the condition p = 0  is specified at the outlet. When setting V =  
V*Q,/Qo, the error E = 11 - QJQol seldom exceeds 1 per mille, except at the beginning of a 
calculation, when starting from a non-conservative velocity field. 

4.4. Other possible methods 

As stated in the introduction, the treatment of advection by the method of characteristics 
can be associated with any solver of the Stokes problem, to solve the Navier-Stokes 
equations. 

to solve the following Stokes problem, 
restricting ourselves to the Taylor-Hood element. 

Let us review some recent F.E. 

a V - V V = - V p + S  (20) 
V V = 0  (21) i Vlr' V" (22) 

where a is a scalar constant, S a given vector. V and p are the unknown velocity and 
pressure fields. Equation (22) represents the boundary conditions. 

4.4.1. Coupled discretization (SPFE). The set of equations (20), (21) may also be solved 
by  assembling and solving a single large linear s y ~ t e m . ~ . ~ ' ~ ~  For each interior triangle the 
variational principle applied to the set (20), (21) leads to the system. 
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The matrices C,, C, are not exactly those defined in Section 4.1, since the formulation 
of the first order derivatives is different. In particular the integration of the continuity 
equation leads to: 

VVSp d o  = 1. SpV. n ds - V .  Sp d o  Q 
I, I, 

Hence: 

C, = c#& dw, C, = && d o  

It is generally convenient to regularize the matrix in the left-hand side of (23) by replacing 
the zeros on the diagonal by a small positive quantity E.  In that way the method is to some 
extent analogous to a penalization method, in which: 

v v + p s = o  

After assembling, the overall matrix is symmetric, but very large and not positive definite. 
However, for a moderate number of nodes, its conditioning remains satisfactory, and the 
system can even be solved by a direct Gauss method, as done in our program. In the 
following text, we shall refer to this method by the name SPFE (Stokes problem by finite 
elements). In two-dimensional calculations with a moderate number of nodes (= 500) the 
CPU time consumption is similar to the time with the PEFE2 method, though the storage 
requirement is more important. With a more important grid, and in particular in a three 
dimensional calculation, the direct Gauss method would become unacceptable and an 
efficient iterative method should be found. An extension of the conjugate gradient method 
with preconditioning7 might be envisaged. 

4.4.2. Method of the trace of p r e s ~ u r e . ~ . ~  This is the method used by Benque et aL2 In this 
method, the coupled system (20), (21) is separated into a cascade of Dirichlet problems, i.e. 
elliptical differential problems with Dirichlet boundary conditions. In two dimensions, this 
method requires 7 Dirichlet problems and the solution of an additional linear system for 
which the matrix A,, is full, symmetric, positive semi-definite. The size of this system is the 
number of pressure nodes located on the boundary r of the domain. When inserted in a full 
Navier-Stokes program, 8 calculations are required at each time step. By comparison, the 
PEFE2 method requires two Dirichlet problems and a smaller elliptical problem with 
Neumann boundary conditions. 

4.4.3. Further methods. The penalization methods do not work well with the P1-P2 
element, and more generally with triangles, according to Sani et al." Results are better with 
quadrangles, as for instance the Q2-Ql discontinuous element (8-node parabolic velocity, 4 
node linear discontinuous pressures). When associated with the method of characteristics, 
this method can probably produce good results, but this was not the experience of the 
authors. 

5. NUMERICAL TESTS ON THE DRIVEN CAVITY FLOW 

In order to illustrate the features of our F.E. method, we calculate the square wall driven 
cavity flow at Re = 1000 (Figure 3). This is not a very good test since: 

(a) Non-physical conditions must be assumed at the edges of the moving wall. 
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Figure 3. Driven cavity-geometry 

(b) No experimental data are available (probably in relation with the non physical 

(c) At high Reynolds number, the solution becomes very sensitive to the grid. 
(d) The most interesting feature of an F.E. method, namely its ability to describe complex 

However, since a large amount of literature is available, this example is helpful to compare 
the results of different authors. 

To perform the following calculations, we have chosen the same grid as Ibler,' (Figure 4). 
Our reference solution is the paper of Fortin et al.,'* whose solution was obtained with a 
high order F.D. method, and a regular 40 x 40 grid. Several other references have been given 
by Thoma~set.~ 

condition above). 

geometries, is not exhibited. 

Figure 4. Driven cavity-mesh system 
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Table I. Summary of the results for the driven cavity 

Method MEM CPU 9- X Y U,, Y ,  Yo isoq isoP 

Fortin 0.085 0.55 0.42 -0.245 0.81 0.415 - - 
PEFE2RK1 588 1.02 0.0887 0.55 0.42 -0.252 0.75 0.44 7 8 
PEFE2RK2 588 1.20 0.0829 0.54 0.42 -0.243 0-80 0.44 9 10 
PEFE2RK4 588 1.51 0.0827 0.54 0.42 -0.242 0.80 0.44 11 12 
SPFERK2 1028 1.65 00838 0.55 0.42 -0.248 0.80 0.432 13 14 

~ ~ 

MEM: storage requirement on an ITEL AS7, in KBytes of 8 Bits 
CPU: in seconds, for one time step 
Y,,, X, Y: discharge of the main vortex, and location of the eye 
Urn: minimum velocity U(0.5, Y,) on the plotted velocity profile 
Yo: ordinate of null velocity U(0.5, Yo) = 0 
1so 3: figure number for streamlines 
is0 P :  figure number for pressure field 

For each calculation, we display: 
(i) the velocity profile ~ ( 0 . 5 ,  y), 01y I 1, 

(ii) the streamlines 
(iii) the pressure field. 

The time increment is always St = 0.1, thus corresponding to an F.D. Courant number 
c = US& = 2. Table I summarizes some scalar values corresponding to each solution. 

After a short general remark we shall focus the discussion on the two main difficulties of 
the numerical solution of the Navier-Stokes equations, namely the treatment of advection, 
and the solution of the pressure-velocity coupling, or Stokes problem. 

5.1. General remarks 

All the solutions are very acceptable, with regard to the reference solution. The main 
characteristics of the solution are in good agreement with the reference, and in particular 
the values U,,, Y,, Yo (see Table I) which are sensitive to the diffusion-physical and 
numerical. 

5.2. Treatment of advection (Figure 5 )  

The increase of the order of the RK method from 1 to 2 improves the solution, even for a 
moderate time increment. For larger time steps, the curvilinear characteristic would become 
really necessary. On the other hand, the RK4 method brings the same results as the RK2 
one, with an increase of CPU consumption. This would indicate that the characteristic of 
second order is accurate enough. 

5.3. Solution of the Stokes problem 

Since Ibler' uses the RK2 characteristic, and has done the same calculation with the same 
grid and time increment, we can compare efficiently three different methods to solve the 
Stokes problem: 

(i) the trace of pressure 
(ii) the coupled discretization, or SPFE 

(iii) the solution of the Poisson equation, or PEFE2. 
The corresponding velocity profiles are plotted in Figure 6. At ordinate y = 0.72, we note an 
inversion of curvature in the reference solution, the Ibler's solution, and not in our solutions. 
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FEFEFENCE SOLUTION FORTIN 

PEFEZ RK1 

PEFE2 RKZ 

PEFEZ RK4 

__L_ 

- - -  
- - - - - c - 

Figure 5.  Velocity profile. Influence of the order of the characteristic 

This difference cannot be explained up to now. Nevertheless, the four solutions are very 
close, which indicate that any of the quoted Stokes solvers gives interesting results, when 
associated with the advective term treatment by the method of the RK2 characteristic. 

6. SYMMETRICAL FLOW PAST A CYLINDER 

A further example of calculation is the flow past a circular cylinder at Re = 40, which is the 
maximum value for which the wake is stable. This case has the drawback of involving a very 
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REFERENCE SOLUTION FORTIN 

__- TRACE OF PRESSURE, RK2 (IBLER) 
PEFE2 RK2 
SPFE RK2 

- - -  
-_----- 

Figure 6. Velocity profile. Influence of the Stokes solver 

low value of the Reynolds number, but it is interesting for several reasons: 
(a) relative complexity of the geometry 
(b) boundary layer with strong pressure gradient 
(c) several experimental and numerical results available. 

Whereas the preceding section was devoted to the comparison of different numerical 
methods, we now restrict ourselves to the PEFE2-RK2 method, which is obviously the 
simplest and cheapest method. 



Figure 7. Streamlines, PEFE2 method, RKl characteristic 

-_ 

Figure 8. Pressure field, P E E 2  method, RK1 characteristic 



Figure 9. Streamlines, P E E 2  method, RK2 characteristic 

Figure 10. Pressure field, PEFE2 method, RK2 characteristic 



\ 

~~ 

Figure 11. Streamlines, PEFE2 method, RK4 characteristic 

Figure 12. Pressure field, P E E 2  method, RK4 characteristic 



\ 

Figure 14. Pressure field, SPFE method, RK2 characteristic 
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6.1. Domain of calculation and boundary conditions 

Figure 15 shows the grid used for this problem. The radius of the cylinder is R = 1, the 
height of the domain is 15, which leads to a confinement ratio of A = 1/15. The boundary 
conditions are also indicated in this figure. To solve the Poisson equation, we set aplan = 0 
everywhere, except at the outlet boundary where p = O .  Since the Reynolds number is 
Re = 2R/v = 40, the calculations are done with v = 0.05. 

-10 40 x 

Figure 15. Flow past a cylinder-geometry 

6.2. Presentation of the results 

Each result is illustrated by plotting the shearing stress and the reduced pressure around 
the cylinder, and the x component of the velocity on the x axis, behind the cylinder. The 
shearing stress ~ ( 0 )  = v dU,/an is obtained at the boundary nodes, by calculation of the 
partial derivatives aulax, du/ay, av/ax, avldy, from the velocity field. 

The reduced pressure is defined as: 

B(0> = ( P  - P0)liPKi 

with U o = l  and p = l  
pa is the pressure at the less perturbed point of the inlet boundary, namely the upper left 

corner of the domain of calculation. T and p are also integrated around the cylinder, to 
evaluate the viscosity and pressure drags. 

C,, = 2 P . r  sin 8 d0 

c p = 2  pcosOd8 1, 
The total drag is defined by: 

c, = c, + c, 
Owing to the curvilinear characteristic, and the implicit treatment of diffusive terms in the 
momentum equations, our method is stable without limitation on the time increment. Five 
calculations are done with time increments St of 0.5, 0.2, 0.1, 0.05, 0.01. Figures 16, 17, 18 
show the distribution of T, p and u, for these 5 calculations. Furthermore, Table 11 
summarizes the values of pressure drag q, viscosity drag C,, and total drag C,. 
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Figure 16. Shearing stress-influence of the time increment 

6.3. Influence of the time increment 

Owing to the unconditional stability of the method, a large time increment can be used in 
steady state calculations. This leads to important CPU time savings. The present solution for 
t = 0.5 was reached in 100 time steps, whereas about 1000 steps were needed for t = 0.05. 

However, an unfortunate sensitivity of the solution to the time increment appears on these 
results. The poor result obtained with St=0.5  is understandable, since in that case, the 
curvilinear characteristic crosses several triangles. 

The derivatives of the velocity field not being continuous between two elements, a loss of 
precision in the integration of the equation (3) occurs. Moreover the assumption of Section 3: 

& (-Vp + v V'V) dt -Vp"" + v V2Vn+' 

is no longer acceptable when the starting point for the integration M" is too far from the 
terminal point 

However we could expect a better stabilization of the solution when St --j 0. An explana- 
tion of this disappointing behaviour may be found in the very principle of the method of 
characteristics. An Eulerian treatment of advection states: 

-.=- DV aV+V.VV 
Dt at 

Thus, when a steady state is reached, the non-stationary term drops, and the advective term 
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Figure 17. Pressure distribution-influence of the time increment 

is no longer dependent on the time increment. With the method of characteristics, we write: 

D V  - = (V- V*)/St 
Dt 

Thus, even when a steady state is reached, the advective terms always remain numerically 
dependent on t .  

Notwithstanding this drawback, the results are acceptable, as we will now see, especially 
for the velocity field. In the following text, we will only take into consideration our solution 
for St = 0.1. It will be compared to other numerical results, and to some experimental data. 
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u 

- 0.1 

Figure 18. Velocity on the axis behind the cylinder-influence of the time increment 

Table 11. Drag coefficients for the circular cylinder 

0.5 1.10 0-58 1.68 
0.2 1.26 0.56 1.82 
0.1 1.16 0.55 1.71 
0.05 1.14 0.57 1.71 
0.01 1.10 0.58 1.68 

6.4. Summary of data available for the comparison 

Pressure and shearing stress at the surface of the cylinder have been calculated in 
particular by Kawaguti13 and Dennis and Chang.14 The shearing stress distribution can also 
be found in a paper by Ta Phuoc L0c.l’ Dimopoulos and Hanratty16 obtained direct 
measurements of the shearing stress at the surface of a cylinder for 60 I Re 5 360. However, 
to our knowledge, no such measurements were done for Re = 40. Thus, we only compare 
different numerical results for the shearing stress. Pressure measurements where performed 
by Thom17 and Grove et a l l8  The total drag coefficient was measured by Tritton,” and 
calculated in the numerical works above. Velocity measurements behind a cylinder were 
conducted by Coutanceau and Bouard,20 Nishioka and Sato2’ and Taneda.22 

6.5. Discussion 

Figure 19 shows that the different values of T(6) compare quite well. This good result is 
particularly encouraging, since it shows that normal derivatives du,/an can be accurately 
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Figure 19. Shearing stress-numerical results: - our results; --- Kawaguti; -. - . - Dennis; 
Ta Phouc Loc - - - - - - - 

determined at the wall, from the velocity field, by deriving the shape function of the 
boundary elements. Now the shearing stress on a wall is of essential importance in industrial 
calculations. In Figure 20, our pressure curve is compared to numerical solutions, and 
experimental points. Agreement is acceptable, though less satisfactory than for the shearing 
stress. However, it must be noted that some discrepancies were expectable, since the 
surrounding conditions are different: 

(i) Our boundary conditions for velocity (see Figure 18) are compatible with those in 
Coutanceau’s experiment: a moving cylinder in a motionless tank, with a confinement 
ratio h = 1/15. However, our outlet boundary condition for the pressure p = 0 could 
correspond to a discharge in the atmosphere or in a free surface reservoir or to an 
undisturbed pipe or channel flow, which does not reflect the experimental situation. 

(ii) Pressure measurements were done in a channel flow, with h50-05.  Therefore, a 
boundary layer along the walls of the channel was present, which is not the case in the 
present calculations. Moreover, like in Coutanceau’s experiments, pressure in the 
cross-section located at 20 diameters behind the cylinder was certainly not uniform. 

(iii) Other quoted numerical calculations were done with the assumption of an infinite 
medium. 

According to Table 11, the total drag C, takes the value 1.7. This value is in very good 
agreement with other calculated values, and experimental results by Tritton” and Nishioka 
and Sato.’l 
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Figure 20. Pressure distribution-numerical results: - our results; --- Kawaguti; -.-%- Dennis. 
Experimental results: 0 Thom; 0 Grove 

To achieve this comparison, Figure 21 displays our result for the u velocity component 
along the x axis, behind the cylinder, associated with another numerical solution by 
K a ~ a g u t i , ' ~  and experimental points by Coutanceau and Bouard." The agreement in the 
first part of the wake between our result and the experimental data is excellent. The position 
of the separation point is also satisfactory: 128" for an experimental value of 127.2". A 
discrepancy appears however, about the length L of the wake L = 4.7 instead of 4. Since 
Re = 40 is the limiting value for the stability of the wake, it is understandable that the 
downstream part of the wake is sensitive to wall effect, outlet pressure condition, or local 
roughness of the grid in this zone. Anyway, this value of 4-7 lies in the range of the various 
values found in the literature, and reported for instance by Nishioka and Sato;" 

3.9 5 L (4.8 
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Figure 21. Velocity on the axis behind the cylinder: __ our results; - - - Kawaguti’s numerical results; 
0 Coutanceau’s experimental results 

7 .  CONCLUSION 

Our FE method involving the solution of the Poisson equation (PEFE2) is simple in its 
principle. It presents no difficulties of coding, except for the curvilinear characteristic. This 
curvilinear characteristic, however, gives very interesting features to the method: the 
advection step is explicit, but unconditionally stable. It follows that: 

(a) Transient calculations are possible, without theoretical limitation on the time incre- 
ment. When only the steady solution is needed, stabilization occurs very fast with a 
large time step, though a short rerun with a smaller time increment is necessary, for 
the accuracy of the pressure solution. 

(b) Since the treatment of non-linearities is explicit, the linear systems to be solved remain 
symmetric definite positive. Moreover, additional scalar equations with coupling 
(thermal problems, turbulence models) can be introduced without basic difficulty. 

In addition to these theoretical advantages, numerical tests show the encouraging be- 

(i) The numerical diffusion due to treatment of advection is very comparable to that 

(ii) The incompressibility condition is very acceptably satisfied. 
(iii) The time consumption and core memory requirements are moderate, with regard to 

(iv) Comparison with available experimental data (flow past a cylinder at Re = 40) proved 

haviour of our method: 

occurring with a reliable high order finite difference method. 

some other F.E. methods, such as the ‘trace of pressure’. 

to be satisfactory. 
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Consequently, our method seems to be suitable for more difficult applications, such as for 
instance calculation of turbulent industrial flows in two or three dimensions. 
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